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We describe a statistical approach for identifying nonlinearity in time series. The method first specifies some linear 
process as a null hypothesis, then generates surrogate data sets which are consistent with this null hypothesis, and finally 
computes a discriminating statistic for the original and for each of the surrogate data sets. If the value computed for the 
original data is significantly different than the ensemble of values computed for the surrogate data, then the null hypothesis 
is rejected and nonlinearity is detected. We discuss various null hypotheses and discriminating statistics. The method is 
demonstrated for numerical data generated by known chaotic systems, and applied to a number of experimental time series 
which arise in the measurement of superfluids, brain waves, and sunspots; we evaluate the statistical significance of the 
evidence for nonlinear structure in each case, and illustrate aspects of the data which this approach identifies. 

1. Introduction 

T h e  inverse  p r o b l e m  for  a n o n l i n e a r  sys tem is 

to  d e t e r m i n e  the  unde r ly ing  dynamica l  p rocess  in 

the  p rac t i ca l  s i tua t ion  where  all that  is ava i lab le  

is a t ime  ser ies  of  da ta .  A l g o r i t h m s  have  been  

d e v e l o p e d  which can in p r inc ip le  m a k e  this dis- 

t inc t ion ,  but  they  are  no to r ious ly  unre l i ab le ,  and  

usua l ly  involve  c o n s i d e r a b l e  h u m a n  judgemen t •  

Pa r t i cu l a r ly  for  e x p e r i m e n t a l  da t a  sets,  which are  

o f t en  shor t  and  noisy ,  s imple  a u t o c o r r e l a t i o n  can 

fool  d i m e n s i o n  and L y a p u n o v  e x p o n e n t  es.. 

t i m a t o r s  in to  s ignal l ing chaos  where  the re  is; 

none .  M o s t  au tho r s  ag ree  tha t  the  m e t h o d s  con- 

ta in  m a n y  pi t fa l ls ,  but  it is not  a lways  easy  to 

avo id  them.  W h i l e  some  da ta  sets  very  c lean ly  

exh ib i t  l o w - d i m e n s i o n a l  chaos ,  the re  are  many  

cases  where  the  ev idence  is ske tchy  and  difficult  

tO eva lua t e .  I n d e e d ,  it is poss ib le  for  one  au tho r  

to  c la im ev idence  for  chaos ,  and  for  a no the r  to 

a rgue  tha t  the  da t a  is cons is ten t  with a s imple r  

e x p l a n a t i o n  [1-4] .  

T h e  rea l  compl i ca t i on  ar ises  because  low- 

d i m e n s i o n a l  chaos  and  u n c o r r e l a t e d  noise are  

not  the  on ly  ava i l ab le  a l te rna t ives .  The  e r ra t ic  

f luc tua t ions  tha t  a re  o b s e r v e d  in an e x p e r i m e n t a l  

t ime  ser ies  owe  the i r  dynamica l  va r i a t ion  to a 

mix of  va r ious  inf luences:  chaos ,  nonchao t i c  but  

still  n o n l i n e a r  d e t e r m i n i s m ,  l inear  cor re la t ions ,  

and  noise ,  bo th  in the  dynamics  and in the 

m e a s u r i n g  a ppa ra tu s .  Whi l e  we are  m o t i v a t e d  by 

the  p r o s p e c t  of  u l t ima te ly  d i sen tang l ing  these  

inf luences ,  we t ake  as a m o r e  m o d e s t  goal  the  

d e t e c t i o n  of  n o n l i n e a r  s t ruc ture  in a s t a t ionary  

t ime  ser ies .  (We  will not  a t t e m p t  to charac te r i ze  

n o n - s t a t i o n a r y  t ime  s e r i e s - s e e  refs.  [5-9]  for  a 
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discussion of some of the problems arising in the 
estimation of nonlinear statistics from non- 
stationary data.) 

Positive identification of chaos is difficult; the 
usual way to detect low-dimensional behavior is 
to estimate the dimension and then see if this 
value is small. With a finite time series of noisy 
data, the dimension estimated by the algorithm 
will at best be approximate and often, outright 
wrong. One can guard against this by attempting 
to identify the various sources of error (both 
systematic and statistical), and then putting error 
bars on the estimate (see, for example, refs. 
[10-18]). But this can be problematic for non- 
linear algorithms like dimension estimators: first, 
assignment of error  bars requires some model of 
the underlying process, and that is exactly what 
is not known; further,  even if the underlying 
process were known, the computation of an 
error  bar may be analytically difficult if not 
intractable. 

The goal of detecting nonlinearity is consider- 
ably easier than that of positively identifying 
chaotic dynamics. Our approach is to specify a 
well-defined underlying linear process or null 
hypothesis, and to determine the distribution of 
the quantity we are interested in (dimension, 
say) for an ensemble of surrogate data sets which 
are just different realizations of the hypothesized 
linear stochastic process. Then,  rather than esti- 
mate error  bars on the dimension of the original 
data, we put error bars on the value given by the 
surrogates. This can be done reliably because we 
have a model for the underlying dynamics (the 
null hypothesis itself), and because we have 
many realizations of the null hypothesis, we can 
estimate the error  bar numerically (from the 
standard deviation of all estimated dimensions of 
the surrogate data sets) and avoid the issue of 
analytical tractibility altogether. 

While this article elaborates on preliminary 
work described in an earlier publication [19], our 
aim is to make this exposition self-contained. In 
section 2, we express the problem of detecting 
nonlinearity in terms of statistical hypothesis 

testing. We introduce a measure of significance, 
develop various null hypotheses and discriminat- 
ing statistics, and describe algorithms for 
generating surrogate data. Section 3 demon- 
strates the technique for several computer-gener- 
ated examples under a variety of conditions: 
large and small data sets, high and low-dimen- 
sional attractors, and various levels of observa- 
tional and dynamical noise. In section 4, wc 
illustrate the application of the method to several 
real data sets, including fluid convection, elec- 
troencephalograms (EEG ) ,  and sunspots. With 
real data, there is always room for human judg- 
ment,  and we argue that besides formally reject- 
ing a null hypothesis, the method of surrogate 
data can also be useful in an informal way, 
providing a benchmark,  or control experiment,  
against which the actual data can be compared. 

2. Statistical hypothesis testing 

The formal application of the method of surro- 
gate data is expressed in the language of statisti- 
cal hypothesis testing. This involves two ingredi- 
ents: a null hypothesis against which observa- 
tions are tested, and a discriminating statistic. 
The null hypothesis is a potential explanation 
that we seek to show is inadequate for explaining 
the data; and the discriminating statistic is a 
n u m b e r  which quantifies some aspect of the time 
series. If this number is different for the ob- 
served data than would be expected under the 
null hypothesis, then the null hypothesis can be 
rejected. 

It is possible in some cases to derive analytical- 
ly the distribution of a given statistic under a 
given null hypothesis, and this approach is the 
basis of many existing tests for nonlinearity (e.g., 
see refs. [20-26]). In the method of surrogate 
data, this distribution is estimated by direct 
Monte  Carlo simulation. An ensemble of surro- 
gate data sets are generated which share given 
properties of the observed time series (such as 
mean, variance, and Fourier spectrum) but are 
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otherwise random as specified by the null hy- 
pothesis. For each surrogate data set, the dis- 
criminating statistic is computed,  and from this 
ensemble of statistics, the distribution is approxi- 
mated. 

While this approach can be computationally 
intensive, it avoids the analytical derivations 
which can be difficult if not impossible. This 
leads to increased flexibility in the choice of null 
hypotheses and discriminating statistics; in par- 
ticular, the hypothesis and statistic can be chosen 
independently of each other. The method of 
surrogate data is basically an application of the 
"boots t rap"  method of modern statistics. These 
methods have by now achieved widespread 
popularity for reasons that are well described in 
Efron's  1979 manifesto [27]. A more recent ref- 
erence,  which applies the bootstrap in a context 
very similar to ours is by Tsay [28]. 

2. 1. Computing significance 

Let Qo denote the statistic computed for the 
original time series, and Qu, for the ith surrogate 
generated under the null hypothesis. Let ~H and 
o- H denote  the (sample) mean and standard de- 
viation of the distribution of QH- 

If multiple realizations are available for the 
observational data, then it may be possible to 
compare the two distributions (observed data 
and surrogate) directly, using for instance the 
Kolmogorov-Smirnov  or Mann-Whi tney test, 
which compare the full distributions, or possibly 
a Student-t  test which only compares their 
means. For the present purposes, however, we 
consider that only one experimental data set is 
available #1, and we use a kind of t test. 

'~ Of  course,  it is always possible to create several realiza- 
t ions out  of that single set by chopping up the data; we have 
not  tried this approach,  but just as the convergence of 
numerical  algori thms like correlation dimension and 
Lyapunov  exponent  est imation are compromised by shor- 
tened data sets, so we suspect will be their power to reject a 
null hypothesis .  This is only a suspicion, however;  it would 
be worthwhile to compare the relative power of several short 
data sets versus that of one long data set. 

We define our measure of "significance" by 
the difference between the original and the mean 
surrogate value of the statistic, divided by the 
standard deviation of the surrogate values: 

I Q ~  - ~ . ]  
5~ - (1)  

o- u 

The significance is properly a dimensionless 
quantity, but it is natural to call the units of S t 
"sigmas". If the distribution of the statistic is 
gaussian (and numerical experiments indicate 
that this is often a reasonable approximation), 
then the p-value is given by p = erfc(Se/V'2); this 
is the probability of observing a significance 5 e or 
larger if the null hypothesis is true. 

A more robust way to define significance 
would be directly in terms of p-values with rank 
statistics. For example, if the observed time 
series has a statistic which is in the lower one 
precentile of all the surrogate statistics (and at 
least a hundred surrogates would be needed to 
make this determination),  then a (two-sided) 
p-value of p = 0.02 could be quoted. We have 
used eq. (1) for the investigations reported here 
because the computational effort in that case is 
not as severe. 

2.1.1. Estimating error bars on significance 
Our plots of significance include error bars; 

these are meant only as a rough guide and are 
computed assuming that the statistics are distrib- 
uted as a gaussian. 

We write the error bar on 9° as ASe, and it is 
computed by standard propagation of errors 
methodology. Here 

+ 

(AI,~H)2 Jr- (A~,D)2  

(t"/'tt --  ~U~D) 2 

AO'H)  

O" H / 

+ 
k O" H / 

(2) 

Now the error of the sample mean based on N 
observations is given by (AJ./~) 2=  o'2/N, and the 
error  of the sample standard deviation is 
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(Act) 2 = o'2/2N, so we can write 

[ A,Sf~ 2 O'H/N H + c r ~ / N  D 1 

~ ~ ~- (~{'£H -- ~D) 2 ~- 2 N ~ .  (3) 

The absolute error bar is then given by 

ASg = ~/(1 + ½oW2)/NH + ( O - D / O ' H ) 2 / N D  . (4) 

When only a single realization of the time 
series is available, we take ~r D = 0 and ignore the 
second term in the above equation. This reports 
the error  bar  on the significance of the specific 

realization. 
In our numerical experiments,  we use several 

realizations of the time series under question. 
However ,  the significance we report  is not based 

on the collective evidence of the several, but is 
the average significance of each realization taken 
individually. The error bar in that case describes 
the expected error of our estimate of this aver- 
age. Note that this differs from the error re- 

por ted for a single realization. 

2.2. Toward  a hierarchy o f  nul l  hypotheses  

The null hypothesis defines the nature of the 
candidate process which may or may not 
adequately explain the data. Our null hypotheses 
usually specify that certain properties of the 
original data are p r e s e r v e d - s u c h  as mean and 
v a r i a n c e - b u t  that there is no further structure 
in the time series. The surrogate data is then 
generated to mimic these preserved features but 
to otherwise be random. There  is some latitude 
in choosing which features ought to be pre- 
served: certainly mean and variance, and pos- 
sibly also the Fourier power spectrum. If the raw 
data is discretized to integer values, then the 
surrogate data should be similarly discretized. 

Ult imately we envision a hierarchy of null 
hypotheses  against which time series might be 
compared .  Beginning with the simplest hypoth- 
eses, and increasing in generality, the following 
sections outline some of the possibilities that we 
have considered. 

2.2. I. Temporal ly  independent  data 

The first (and easiest) question to answer 
about  a t ime series is whether  there is evidence 
for any dynamics at all. The null hypothesis in 
this case is that the observed data is fully de- 
scribed by independent  and identically distribut- 
ed ( I ID)  random variables. If the distribution is 
fur ther  assumed to be gaussian, then surrogate 
data can be readily generated from a standard 

pseudorandom number  generator ,  normalized to 
the mean and variance of the original data. 

To test the hypothesis of I ID noise with arbi- 

trary ampl i tude  distribution in an analysis of 
stock marke t  returns, Schienkman and LeBaron 
[29] generated surrogate data by shuffling the 
t ime-order  of the original time series. The surro- 
gate data is obviously guaranteed to have the 
same amplitude distribution as the original data, 
but any temporal  correlations that may have 
been in the data are destroyed. Breeden and 
Packard also used a shuffling process along with 
a sophisticated nonlinear predictor to prove that 

there was some dynamical structure to a time 
series of quasar data which were sampled 
nonuniformly in time [30]. 

2.2.2.  O r n s t e i n - U h l e n b e c k  process 

A very simple case of non-I ID noise is given 
by the Orns te in -Uhlenbeck  process [31]. A dis- 
crete sampling of this process yields a model of 
the form 

x,  = a o + a lx ,_  t + o-e, , (5) 

where e, is uncorrelated gaussian noise of unit 

variance. The coefficients a 0, a~, and ~7 collec- 
tively determine the mean,  variance, and auto- 
correlation time of the time series. In fact, the 
autocorrelat ion function is exponential in this 
case, 

- ( x , ) e  ,1<  
( x ; ) -  ( x , )  e 

where ( ) denotes an average over time t, and 

A - - l o g  al.  
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To make surrogate data sets, the mean p~, 
variance v, and first autocorrelation A(1) are 
estimated from the original time series; from 
these the coefficients are fit: a~ = A(1),  a0=  
/z(1 - a~), and ~r 2 = v(1 - a~). Finally, one gen- 
erates the surrogate data by iterating eq. (5), 
using a pseudorandom number generator for the 
unit variance gaussian e,. 

2.2.3. Linearly autocorrelated gaussian noise 

We can generalize the above null hypothesis 
by extending eq. (5) to arbitrary order. This 
leads to the hypothesis that is generally associ- 
ated with linearity. We emphasize that we are 
discussing linear gaussian processes here (see 
Tong [26, pp. 13, 14] for a brief description of 
some of the surprising properties of linear non- 
gaussian processes); Section 2.2.4 describes one 
approach toward a nongaussian null hypothesis. 
The model is described by fitting coefficients a k 
and or to a process 

q 

x, = a o+ ~'~ akx , k + °'e, , (7) 
k 1 

which mimics the original time series in terms of 
mean,  variance, and the autocorrelation function 
for delays of z = l  . . . .  , q .  This is an auto- 
regressive (AR) model; a more general model 
includes a moving average (MA) of time delayed 
noise terms as well, and the combination is 
called an A R M A  model. For large enough q, the 
models are essentially equivalent. The null hy- 
pothesis in this case is that all the structure in the 
time series is given by the autocorrelation func- 
tion, or equivalently, by the Fourier power 
spectrum. 

One algorithm for generating surrogate data 
under this null hypothesis is again to iterate eq. 
(7), where the coefficients have been fit to the 
original data. We describe an alternative al- 
gorithm in section 2.4.1 which involves ran- 
domizing the phases of a Fourier transform. (To 
our knowledge, this algorithm was first suggested 
in this context by Osborne et al. [5], and in- 

dependently in refs. [15, 32].) The alternative 
algorithm generates surrogate data which by con- 
struction has the same Fourier spectrum as the 
original data. While the two algorithms are es- 
sentially equivalent, we use the Fourier trans- 
form method because it is numerically stabler. If 
the values of the coefficients in eq. (7) are 
mis-estimated slightly, it is possible that iterating 
the equation will lead to a time series which 
diverges to infinity; this is particularly prob- 
lematic if the raw time series is nearly periodic or 
highly sampled continuous data. 

We remark that this is the null hypothesis that 
is associated with residual-based tests for non- 
linearity. For instance, see refs. [22-24, 33, 34]. 
In these tests, a model of the form of eq. (7) is 
fit to the data, and the residuals 

• q 

k ~ l  

are tested against a null of temporally indepen- 
dent noise. In ref. [19], we argue that it is usually 
preferable to use the method of surrogate data 
on the raw data directly, rather than working 
with residuals. 

2.2.4. Static nonlinear transform o f  linear 

gaussian noise 

One way to generalize the above null hypoth- 
esis to cases where the data is nongaussian is to 
suppose that although the dynamics is linear, the 
observation function may be nonlinear, In par- 
ticular, we hypothesize that there exists an "un- 
derlying" time series {y,}, consistent with the 
null hypothesis of linear gaussian noise, and an 
observed time series {x,} given by 

x, = h ( y , ) .  (9) 

Since x, depends only on the current value of y, 
and not on derivatives or past values, the filter 
h( ) is said to be "static" or "instantaneous".  To 
permit the generation of surrogate data, we must 
further assume (as part of the null hypothesis) 



82 J. Theiler et al. / The method of surrogate data 

that the observat ion function h ( )  is effectively 
invertible. 

In section 2.4.3, an algorithm for generating 
surrogate data corresponding to this null hypoth- 
esis is described. Its effect is to shuffle the time- 
order  of the data but in such a way as to preserve 
the linear correlations of the underlying time 
series y, = h ~(x,). One advantage of shuffling 
over,  for example,  a smooth fit to the function 

h ( ) ,  is that any discretization that was present in 
the original data will be reflected in the surrogate 
data. 

Note  that t ime series in this class are strictly 
speaking nonlinear,  but that the nonlinearity is 
not in the dynamics. Most conventional tests for 
nonlinearity would (correctly) conclude that the 
time series is nonlinear,  but would not indicate 
whether  the nonlinearity was in the dynamics or 
in the amplitude distribution. By using surrogate 
data tailored to this specific null hypothesis, it 
becomes possible to make such fine distinctions 
about  the nature of the dynamics. 

2.2.5.  More  general  nul l  hypotheses  

Eventually,  we would like to extend this list to 
consider more  general cases. A natural next step 
is a null hypothesis that the dynamics is a noisy 
limit cycle. Such time series cannot be described 
by a linear process, even if viewed through a 
static nonlinear transform. Yet it is often of great 
interest,  particularly in systems driven by season- 
al cycles, to determine the nature of the inter- 
seasonal variation. 

There  is another  large class of nonlinear sto- 
chastic processes which are not predictable even 
in the mean;  among these are the conditional 
heteroscedastic models (for which the variance is 
condit ioned on the past, but not the mean) in 
favor among economists. While there is definite 
nonlinear structure in these time series, it is not 
manifested in enhanced predictability by non- 
linear models.  (For  instance, it may be possible 
to predict the magnitude Ix,I from past values of 
x ,  but not the sign.) 

(a) ~ . ~ J ~ . ~ F ~ , ~ . ~ . ~  

(b) - ~  

(c) 

(d) ~ ,, 

(e) ~ _  

(f) 

(g) ' - ~ x J "  

(h) ~ ~ f % ~ ) ~ . , / ~ , ~ j - , ~ ,  

Fig. 1. Shown is a time series from the Mackey Glass equa- 
tion with ~-= 30, which is known to be low-dimensional and 
chaotic, and seven surrogate time series generated by the 
WFT algorithm. It is often not obvious by eye which is the 
actual data set and which are the surrogates. In this case it is 
series (f) which is the real one. 

2.3. Battery o f  discriminating statistics 

The method of surrogate data can in principle 
be used with virtually any discriminating statistic. 
Formally,  all that is required to reject a null 

hypothesis is that the statistic have a different 
distribution for the data than for the surrogates. 
However ,  the method is more useful if the statis- 
tic actually provides a good estimate of a phys- 
ically interesting quantity; in that case, one may 
not only formally reject a null hypothesis, but 
also informally characterize the nature of the 
nonlinearity. 

Since we were motivated by the possibility that 
the underlying dynamics may be chaotic, our 
original choices for discriminating statistics were 
the correlation dimension, Lyapunov exponent,  
and forecasting error. Ideally, dimension counts 
degrees of f reedom, Lyapunov exponent quan- 
tifies the sensitivity to initial conditions, and 
forecasting error tests for determinism. One of 
the ultimate aims in this project is to understand 
the conditions in which one or the other of these 
methods  will be more effective. 

We should remark  that a danger in using a 
bat tery of statistics is that one of them, by 
chance, will show up as significant. This effect 
can be formally accounted for by keeping strict 
count of the number  of tests used, and increasing 



J. Theiler et al. / The method o f  surrogate data 83 

the threshold of significance accordingly. The 
formal approach tends to be more conservative 
than necessary, since the tests are not really 
independent  of each other,  but it is still a recom- 
mended practice to maintain a reasonably high 
threshold of significance. 

2.3.1. Correlation dimension, ~, 
Dimension is an exponent  which characterizes 

the scaling of some bulk measure with linear 
size. A number  of algorithms are available [17, 
35] for estimating the dimension of an underlying 
strange attractor from a time series; we chose a 
box-assisted variation [36] (see Grassberger [37] 
for an elegant alternative) of the Grassberger-  
Procaccia-Takens  algorithm [38-40] to compute 
a correlation integral, and the best estimator of 
Takens [12] for the dimension itself. To compute 
a dimension, it is necessary to choose some 
range of sizes over which the scaling is to be 
estimated. The Takens estimator requires only 
an upper  cutoff size; we used one-half of the rms 
variation in the time series for this value. (See 
Ellner [41] for an estimator that takes both an 
upper and a lower cutoff.) 

We will concede that this choice is a bit arbi- 
trary; one might prefer a more sophisticated 
algorithm for choosing a good scaling range. L. 
Smith (personal communication) has suggested 
choosing the range "by eye"  for the raw data 
and then keeping this range for the surrogates. 
From the point of view of the formal test, it does 
not really matter,  but if we are to ask for insight 
as well as a rejected null, then it is important to 
use a good dimension estimator. In the N - - - ~  
limit, the estimator we describe will not converge 
to the actual precise dimension of the attractor, 
but we note that it will converge fairly rapidly to 
a number  which is often reasonably close to 
actual dimension (of course, one can always 
contrive counterexamples);  in particular, it will 
properly indicate low-dimensionality when it sees 
it. While we do not claim that this is the optimal 
dimension estimator, we believe that it is a use- 
ful one. 

2.3.2. Forecasting error, 
A system is deterministic if its future can be 

predicted. A natural statistic in this case is some 
average of the forecasting errors obtained from 
nonlinear modeling. The method we use entails 
first splitting the time series into a fitting set of 
length Nf, and a testing set of length N,, with 
Nf + N t = N, the length of the time series; then 
fitting a local linear model [42] to the fitting set, 
locality given by the number of neighbors k; and 
finally, using this model to forecast the values in 
the testing set, and comparing them with the 
actual values. 

The prediction error  e, = x , -  ~, is the differ- 
ence between the actual value of x and the 
predicted value, .~; we define our discriminating 
statistic as the log median absolute prediction 
e r r o r .  

Several modeling parameters must be chosen, 
including the partitioning of the data set into 
fitting (Nf) and testing (Nt) segments, the num- 
ber of steps ahead to predict (T) ,  and number ot 
neighbors (k) used in the local linear fit. We 
arbitrarily chose to divide the fitting and testing 
sets equally, with Nf = N t = ~N, and to predict 
one step ahead, so T = 1. For oversampled con- 
tinuous data, a larger T would be more appropri- 
ate. The choice of k is also important. For the 
results in this article, we set k = 2m, which is 
twice the minimum number needed for a fit, but 
we note that this is often not optimal. Indeed, 
Casdagli [43, 44] has advocated sweeping the 
parameter  k in a local linear forecaster as an 
exploratory method to look for nonlinearity in 
the first place. 

2.3.3. Estimated Lyapunov exponent, A 
Following standard practices [45-47], we com- 

pute Lyapunov exponents by multiplying Jaco- 
bian matrices along a trajectory, with the mat- 
rices computed by local linear fits, and we use 
Q R decomposition to maintain orthogonality. 

We have found that numerical estimation of 
even the largest Lyapunov exponent can be 
problematic in the presence of noise. Indeed, for 
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our surrogate data sets, for which the linear 
dynamics is contracting, we often obtain positive 
Lyapunov  exponents.  This indicates that our 
Lyapunov  exponent  est imator (which, as we 
have described, is fairly standard) is seriously 
flawed, something we might not have noticed 
had we not tested with linear stochastic time 
series. We are aware of at least one group whose 
Lyapunov  exponent  est imator explicitly consid- 
ers the effects of noise [48-50]. While our es- 
t imator  is arguably still useful as a statistic which 
formally distinguishes original data from surro- 
gate data, it would be bet ter  to use a discriminat- 
ing statistic which correctly quantifies some fea- 
ture of the dynamics, For that reason, we have 
avoided using the Lyapunov exponent  est imator 

in this article. 

function, we use surrogate data. Higher and 
cross moments  provide another  class of dis- 
criminating statistic; in fact, many of these are 
the basis of traditional tests for nonlinearity in a 
t ime series (e.g., see refs. [22-24]). We have 
found that a simple skewed difference statistic, 
defined by Q = ~(x,+ m - x,) 3)/((x~+ m - x,)2),  is 
both  rapidly computable  and often quite power- 
ful. Informally,  this statistic indicates the asym- 
metry  between rise and fall times in the time 
series. The  most direct example we know is due 
to Brock,  Lakonishok,  and LeBaron  [52], who 
used technical trading rules as discriminating 
statistics for financial data; here there is no 
difficulty interpreting the informal meaning of 
the statistic: it is how much money you should 
have made using that rule in that market .  

2.3.4. Other discriminating statistics 

We have found that using the correlation inte- 
gral (C(r) for some value of r) directly as a 
discriminating statistic generally provides a more  
powerful  discrimination than the estimated di- 
mension itself, but of course it is less useful as an 
informal tool. L. Smith (personal communica-  
tion) has suggested using a statistic which charac- 
terizes t h e  linearity of a log C(r) versus log r 
curve. We have also considered but not im- 
p lemented  two-sided fo recas t ing-p red ic t ing  x, 

f rom the past and future values: x, 1 . . . .  ; 
xt+ 1 . . . .  , instead of the usual forecasting which 
uses only the past (this was inspired by the 
simple noise reduction technique suggested by 
Schreiber and Grassberger  [51]). In our forecast- 
ing, we are careful to distinguish the "training" 
set f rom the " tes t ing" set, so that the forecasting 
statistic is an out-of-sample error;  but the in- 
sample fitting error  may also suffice as a dis- 
criminating statistic. We have found that the 
BDS test [33], which was designed to test for any 
tempora l  correlation at a l l -  linear or nonlinear, 
can readily be extended to test other null hy- 
potheses;  we use the same statistic, but we do 
not pre-whiten the data, and instead of relying 
on an analytical derivation of the distribution 

2.4. Algorithms for  generating surrogate data 

In this section, we describe algorithms we use 
for generating surrogate data. The first two are 
consistent with the hypothesis of linearly corre- 
lated noise described in section 2.2.3, and the 
third adjusts for the possibility of a static non- 
linear t ransform as discussed in section 2.2.4. 

2.4.1. Unwindowed Fourier transform (FT)  

algorithm 
This algorithm is based on the null hypothesis 

that the data come from a linear gaussian pro- 
cess. The surrogate data are constructed to have 
the same Fourier spectra as the raw data. The 
algorithm is described in more detail in ref. [19], 
but we briefly note the main features. First, the 
Fourier  t ransform is computed for positive and 
negative frequencies f =  0, l / N ,  2 I N  . . . . .  l /2 ,  
and without the benefit of windowing. Although 
windowing is generally recommended  when it is 
the power  spectrum which is of ultimate interest 
[53], we originally chose not to use windowing 
because what we wanted was for the real and 
surrogate data to have the same power spectrum; 
we were not concerned with the spectrum, per 
se. The Fourier t ransform has a complex am- 
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plitude at each frequency; to randomize the 
phases, we multiply each complex amplitude by 
e i'~, where 4' is independently chosen for each 
frequency from the interval [0, 2~r]. In order for 
the inverse Fourier transform to be real (no 
imaginary components) ,  we must symmetrize the 

phases, so that o h ( f ) =  - 4 ' ( - f ) .  Finally, the in- 
verse Fourier  transform is the surrogate data. 

One limitation of this algorithm is that it does 
not reproduce "pure"  frequencies very well. 
What  happens is that nearby frequencies in 
Fourier  space are "contaminated"  and then be- 
cause their phases are randomized, they end up 
"beat ing"  against each other and producing 
spurious low-frequency effects. (We are grateful 
to S. Ellner for pointing this out to us.) This may 
not be too surprising since it is difficult to make a 
linear stochastic process with a long coherence 
time. Put another  way, the time series should not 
only be much larger than the dominant 
periodicities but also much longer than the 
coherence time of any given frequency if one is 
to try and model it with a linear stochastic 
process. 

A second problem, which is most evident for 
highly sampled continuous data, is that spurious 
high frequencies can be introduced. This can be 
understood as an artifact of the Fourier trans- 
form which assumes the time series is periodic 
with period N. This means that there is a jump- 
discontinuity from the last to the first point. We 
recommend tailoring the length N of the data set 
so that x[O]--~x[N-1]. This should not be a 
problem if the time series is stationary and much 
longer than its dominant frequency. We have 
done this for the experimental results in this 
article. 

2.4.2. Windowed Fourier transform ( WFT) 
algorithm 

The problem of spurious high frequencies can 
also be addressed by windowing the data before 
taking the Fourier transform. The time series is 
multiplied by a function w(t)= sin(wt/N) which 
vanishes at the endpoints t = 0 and t = N. This 

suppresses the jump discontinuity from the last 
to the first point, and seems to effectively get rid 
of the high frequency effect. However,  it also 
introduces a spurious low-frequency from the 
power spectrum of w(t) itself. We have done 
experiments where we simply set the magnitude 
of the offending frequency ( f =  1/N) to zero; 
this seems to work well for stationary time 
series, but if there is significant power at that 
frequency in the original data, it too will be 
suppressed. 

2.4.3. Amplitude adjusted Fourier transform 
( AAFT)  algorithm 

The algorithm in this section generates surro- 
gate data sets associated with the null hypothesis 
in section 2.2.4, that the observed time series is a 
monotonic nonlinear transformation of a linear 
gaussian process. The idea is to first rescale the 
values in the original time series so they are 
gaussian. Then the FF or WFT algorithm can be 
used to make surrogate time series which have 
the same Fourier spectrum as the rescaled data. 
Finally, the gaussian surrogate is then rescaled 
back to have the amplitude distribution as the 
original time series. 

Denote  the original time series by x[t], with 
t = 0  . . . . .  N - 1 .  The first step is to make a 
gaussian time series y[t], where each element is 
generated independently from a gaussian pseu- 
dorandom number generator. Next, we re-order 
the time sequence of the gaussian time series so 
that the ranks of both time series agree; that is, 
if x[t] is the nth smallest of all the x's, then y[t] 
will be the nth smallest of all the y's. Therefore,  
the re-ordered y[t] is a time series which "fol- 
lows" the original time series x[t] and which has 
a gaussian amplitude distribution. Using the FT 
or WFT algorithm, a surrogate, call it y'[t], of 
the gaussian time series can be created. If the 
original time series x[t] is time re-ordered so that 
it follows y'[t] in the sense that the ranks agree, 
then the t ime-re-ordered time series provides a 
surrogate of the original time series which 
matches its amplitude distribution. Further,  the 
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"unde r ly ing"  t ime series (y [ t ]  and y ' [ t ] )  are 

gaussian and have the same Four ier  power  
spect rum.  

3. Experiments with numerical time series 

To  proper ly  gauge the utility of  the surrogate  

data  approach  will eventual ly require many tests 
with data  f rom both  numerical  and labora tory  

exper iments .  In this section we illustrate several 

aspects of  the me thod  with data whose underly-  

ing dynamics  is known.  In the next section,  we 

consider  several examples  with real data. 

3.1. L inear  gaussian data 
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First, we note  that  a time series which actually 
is gene ra ted  by a linear process should by con- 

s t ruct ion give a negative result ( that  is, the null 

hypothes is  should not  be re jected) .  We checked 

this by genera t ing  some time series with two 

simple l inear processes,  a moving average 

x , = e t + a e ,  , (10) 

and an autoregressive 

x,  = ax,_ 1 + e , .  (11) 

We used an embedd ing  dimension m = 3 and 

c o m p u t e d  corre la t ion dimension f rom N = 4096 

points.  The  " co r r ec t "  d imension for both  pro- 
cesses is v = m = 3, though as fig. 2 shows, the 

es t imates  were  always biased low. The  bias in- 

creases for  data  which are more  highly autocor-  

re la ted (la[ larger) but the point  we wish to make  

is that  the bias is the same for the original data 
and for  the surrogates.  The  null hypothesis  is not  

re jected.  
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Fig. 2. Significance of evidence for nonlinearity for lineal 
gaussian time series generated by (a) a moving average 
process, and (b) an autoregressive process. The coefficient ir 
each case is a, The estimated dimension is shown for fiv~ 
realizations of the linear process ([3) and thirty realization,, 
of surrogate data (+). Note that the dimension does nnl 
distinguish the original from the surrogate data. The value we 
obtain for significance is shown in the lower panels and ir 
neither case is significant. 

_3.2. Variation with n u m b e r  o f  data points  and 

complex i t y  o f  attractor 

Using the FT algori thm, we showed in ref. [19] 
that  increasing the n u m b e r  of  points in a time 

series increases the significance with which non- 
linearity can be detec ted  in a time series that i,~ 
known  to be chaotic;  and increasing the com- 
plexity of  the chaotic  time series decreases the 
ability to distinguish f rom linearity. This basic 
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point is illustrated again here using the A A F T  
algorithm (see fig. 3); while the significance is 
not as large using this more general null hypoth- 
esis, the qualitative behavior is the same. Time 
series are generated by summing n independent 
trajectories of the H6non map [54]; such time 
series will have a dimension nv where ~, ~ 1.2 is 

t h e  d i m e n s i o n  o f  a s ingle  H 6 n o n  t r a j e c t o r y .  Fo r  

t h e  l a rge s t  d a t a  sets ,  wi th  N = 8192 po in t s ,  our  

d i m e n s i o n  e s t i m a t o r  o b t a i n e d  c o r r e l a t i o n  d i m e n -  

s ions  o f  1 .215-+ 0 .008,  2.279_+ 0 .014,  3 .48-+ 

0 .02 ,  a n d  4 .81-+  0.06 us ing  e m b e d d i n g  d i m e n -  

s ions  m = 3, 4, 5, a n d  6, fo r  n = 1, 2, 3, and  4, 

r e s p e c t i v e l y .  
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Fig. 3. Using the AAFT algorithm to generate surrogate 
data, the significance as a function of the number N of data 
points is computed for time series obtained by summing n 
independent trajectories of the H6non map. For both (a) 
correlation dimension and (b) forecasting error, the signifi- 
cance increases with number of data points and decreases 
with the complexity of the system. 

3.3. E f f ec t  o f  observat ional  and dynamical  noise 

To test whether nonlinear determinism can be 
detected even when it is mixed with noise, we 
added both dynamical (rl) and observational (e) 
noise to the cosine map: y, = A cos( 'rryt_l)+ rl,; 
x, = y, + e,. We chose a value A = 2.8 which is in 
the chaotic regime when the external noise is 
zero. (The cosine map was used instead of the 
H6non map because it does not "blow up" in the 
presence of too much dynamical noise.) In fig. 4, 
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Fig. 4. Effect of noise on significance for a short time serie 
of N = 512 points, derived from the cosine map with )t = 2.8 
(a) observational noise; (b) dynamical noise. 
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we plot significance as a function of noise level 

for both dynamical and observational noise. As 

expected, significance decreases with increasing 
noise level, though we remark that the non- 

linearity is still observable even with consider- 

able noise. In the absence of noise, the rms 

amplitude of the signal is 0.36; thus we are able 
to detect significant nonlinearity even with a 

signal to noise ratio of one, using a time series of 

length N = 512. We also note that the decrease in 
significance with increased dynamical noise is not 

always monotonic;  low levels of dynamical noise 

can make the nonlinearity more evident. 

3.4. Continuous data 
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In most experiments, data is better described 

as a flow than a map. Although there is a formal 

equivalence, data which arise from processes 
that are continuous in time are often sampled at 

a much faster rate than is characteristic of the 

underlying dynamics. For these data sets, the 

effects of autocorelation can be quite large, and 

the importance of testing against a null hypoth- 

esis that includes autocorrelation becomes 

paramount.  

We illustrate this point with numerical experi- 
ments on data obtained from the Mackey-Glass  

differential delay equation [55] 

dx ax(t-  T) 
dt bx(t) + 1 + [ x ( t -  ~.)],0, (12) 

with a = 0.2, b = 0.1, and r = 30. Grassberger 

and Procaccia [39] compute a correlation dimen- 

sion of u ~ 3.0 for these parameters. 

(b) 
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r 

Fig. 5. (a) Cor re la t ion  integral  C(N, r) fo r  N = 4096 point~ 
and embedding dimensions m = 3, . . .  , 19 from oversampled 
Mackey-Glass data. (b) Estimated correlation dimension 
according to Takens estimator as a function of cutoff r. 

3.4.1. A poor embedding 
We oversample the data (At = 0.1) and use a 

deliberately poor embedding s t ra tegy-s t ra igh t  
time-delay coordinates with a lag time of one 
sample period. We estimate correlation dimen- 
sion with N - 4096 points and compute distances 

between all pairs of distinct vectors (despite the 
advice in refs. [2, 56]). Fig. 5 shows the correla- 

tion integral and estimated dimension as a func- 
tion of the upper cutoff value R. There is about a 
decade of roughly constant slope, which might 
be taken to indicate convergence to a low corre- 
lation dimension. 

For this example, the dimension statistic was 
computed as the Takens best estimator [12] at an 
upper cutoff of R = 0.02. (For comparison, the 
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Fig. 6. (a) Estimated correlation dimension versus embed- 
ding dimension for oversampled (At=O.1) Mackey-Glass 
data ([21) and for surrogates generated using the WFF al- 
gorithm (+). (b) Significance of nonlinearity in no case 
exceeds three sigmas. 

R M S  va lue  for  this t ime  ser ies  is Rrm s = 0.25.) 

Fig.  6a shows an a p p a r e n t  conve rgence  of  the  

e s t i m a t e d  d i m e n s i o n  as a func t ion  o f  e m b e d d i n g  

d i m e n s i o n .  A na ive  i n t e r p r e t a t i o n  of  this f igure 

is tha t  the  t ime  ser ies  ar ises  f rom a l ow-d imen-  

s ional  s t r ange  a t t r ac to r .  H o w e v e r ,  as fig. 6a 

shows ,  the  su r roga t e  da t a  also conve rge  to a low 

d i m e n s i o n ;  the  c o n v e r g e n c e  is ev iden t ly  an art i-  

fact  o f  the  a u t o c o r r e l a t i o n .  I n d e e d ,  fig. 6b shows 

tha t  the  d i m e n s i o n  s ta t is t ic  in this case does  not  

even  p r o v i d e  ev idence  for  non l inea r i ty .  

3.4.2. A better embedding  

F r o m  the  s ame  M a c k e y - G l a s s  process ,  we 

r e c o m p u t e  co r r e l a t i on  d imens ion  and the signifi- 
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Fig. 7. Same as previous figure, except that a better embed. 
ding and a better algorithm were used for estimating thc 
dimension. Not only is the evidence for nonlinearity extreme. 
ly significant in this case, but it is also evident that the 
process is low-dimensional. 
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cance of evidence for nonlinearity using a bet ter  
( though probably still not optimal) choice of 
embedding.  We sample at a much lower rate, 
At = 3.0, and again use straight delay coordinates 

with lag time of one sample period. We estimate 
the correlation dimension as described in section 
2.3.1 with N = 4096 points, and we avoid pairs of 
points which are closer together  in time than one 
hundred sample periods. In fig. 7, we see that 
the evidence for nonlinearity is extremely signifi- 
cant. Indeed,  we also see positive evidence of 
low-dimensional behavior  (the est imated dimen- 
sion u converges with m) which we know is not 
an artifact of autocorrelation. 
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4. Examples with real data 

We report  some results on experimental  time 
series f rom several sources. These results should 
be taken as illustrative, and not necessarily typi- 
cal of the class which they represent.  In particu- 
lar, we have not yet a t tempted to "normal ize"  
our  findings with others that have previously 
appeared  in the literature. 

4. I. Rayleigh-Benard convection 

Data  f rom a mixture of 3He and superfluid 
4He in a Ray le igh-Benard  convection cell [57] 
provides an example where the evidence for 
nonlinear structure is extremely significant. The 
significance as obtained with the dimension and 
forecasting statistics from a time series of N = 
2048 points are shown in fig. 8. Further,  the 
dimension statistic indicates that the flow is in 
fact low-dimensional;  while the measured dimen- 
sion of 3.8 may be due to an artifact of some 
kind, we are at least assured that it is not an 
artifact of autocorrelat ion or of nongaussian am- 
plitude distribution. Farmer  and Sidorowich [42] 
used this data to demonstra te  the enhanced pre- 
dictability using nonlinear rather than linear pre- 
dictors. 
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Fig. 8. Data from a fluid convection experiment exhibits very 
significant nonlinear structure, using (a) dimension, and (b) 
forecasting error. The top panel in these figures show the 
significance, measured in "sigmas", and the bottom panel 
shows the values of the statistics, with squares ([~) for the 
original data and pluses (+)  for the AAFT-generated surro- 
gates. Both panels plot these statistics against the embedding 
dimension m. Not only is the evidence for nonlinear structure 
statistically significant, but the estimated dimension of about 
v =  3.8 suggests that the underlying dynamics is in fact 
low-dimensional chaos. 
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4.2. The human electroencaphalogram (EEG) 

The electroencephalogram ( E E G )  is to the 
brain what the electrocardiogram (EKG)  is to 
the heart.  It has become a widely used tool for 
the monitoring of electrical brain activity, and its 
potential for diagnosis is still being explored. A 
number  of researchers have applied the methods 
that were developed for the analysis of chaotic 
time series to E E G  time series. While it was 
hoped that the characterization of deterministic 
structure in E E G  would eventually lead to in- 
sights about the workings of the brain, the shor- 
ter term goal was to use the nonlinear properties 
of the time series as a diagnostic tool [58, 59]. 

Although we feel a more systematic survey is 
in order,  we have not examined any E E G  data 
which gives positive evidence of low-dimensional 
chaos. However ,  we have found examples where 
nonlinear structure was evident. We present here 
two cases, one positive and one negative. The 
two time series are from the same individual, 
eyes closed and resting; one is from a probe at 
the left occipital (O1),  and the other  from the 
left central (C3) part of the skull. The sampling 
rate is 150 Hz, and N = 2048 time samples are 
taken. The two time series are not necessarily 
contemporaneous.  Using the dimension statistic, 
the first data set shows no significant evidence 
for nonlinearity, but the second data set exhibits 
about eight sigmas. Even in the significant case, 
we do not see any evidence that the time series is 
in fact low-dimensional (the correlation dimen- 
sion v does not converge with increasing embed- 
ding dimension m). We are formally able to 
reject  the null hypothesis that the data arise from 
a linear stochastic process, but by comparing the 
surrogate data to the real data, we see no reason 
to expect that the "significant" data arises from a 
low-dimensional chaotic attractor. 

4.3. The sunspot cycle 

Our final example is the well known and much 
studied eleven year sunspot cycle [44, 60-66]. 
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Fig. 9. Data from two electroencephalogram (EEG)  time 
series. Using the dimension statistic, the first (a) shows no 
nonlinear structure, while the second (b) exhibits significant 
nonlinear structure at the eight sigma level. The evidence for 
low-dimensional chaos, however,  is weak, since the estimated 
dimension increases almost as rapidly with embedding dimen- 
sion for the original time series as it does for the surrogates. 

First, we used the FT algorithm for generating 
surrogate data, but we were careful to use a 
length of time series (N = 287) for which the first 
and last data point both corresponded to 
minima; this avoids introducing the spurious high 
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nonlinear models instead of linear models. How- 
ever, when we expand the null hypothesis to 
include a static nonlinear observation of an un- 
derlying linear gaussian process, the evidence for 
dynamical nonlinear structure is less dramatic. 
Using the dimension statistic, there is no signifi- 
cance; the prediction statistic gives that the 
evidence is just significant; the cubed differ- 

= ) 2 e n c e s t a t i s t i c Q  ((x,+,,-x,)3}/{(x,+,,-x, }, 
which is a measure of the time irreversibility ot 
the data, provides a more significant rejection ot 
the hypothesis of static nonlinear filter of an 
underlying linear process. 

5. C o m p a r i s o n  to other w o r k  

(b) 
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Fig. 10. Significance of nonlinearity in the annual sunspot 
series; (a) against the null hypothesis of linear gaussian noise 
(surrogates generated by FT algorithm), and (b) the null 
hypothesis of amplitude corrected linear gaussian noise (sur- 
rogates generated by AAFT algorithm). For both plots, the 
discriminating statistics are estimated dimension (O), log 
median prediction error ([]), and the skew statistic described 
in the text (O). 

frequencies that we discussed in section 2.4.1. As 
fig. 10a shows, it is possible to quite confidently 
reject  the null hypothesis of linear gaussian 
noise; this is in agreement with the numerous 
authors who obtained better  agreement using 

Numerous authors have carefully compared 
their dimension estimates for real data against 
similar estimates for white noise. A few have 
extended this informal control to other forms of 
correlated noise. Grassberger [2] showed that a 
reported dimension for climate data could be 
reproduced with data from an Ornstein-Uhlen-  
beck process. Osborne et al. [5], criticized the 
Grassberger-Procaccia  algorithm on the basis 
that the low dimension it gave to nonstationary 
data on ocean currents it also gave to data 
generated by randomizing the phases of the 
Fourier  transform. Kaplan and Cohen [32] ar- 
gued that fibrillation was not usefully described 
as chaotic, again since randomly phased data 
gave similar dimensions. Smith [67] has used the 
FT algorithm to generate surrogates which are 
used to assess the predictability of geophysical 
time series. Weiss [62], described a comparison 
of the sunspot time series against a particular 
stochastic model. Brock et al. [52] used technical 
trading rules to distinguish stock market data 
from surrogates generated by several stochastic 
models. And Ellner [68] showed that a variety of 
"plausible alternatives" might adequately ex- 
plain measles and chickenpox data, despite ear- 
lier claims of chaos. 

Brock and coworkers in particular [33, 52, 
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69-71] ,  and the economics  communi ty  in general  

[29, 34, 72, 73], have been  ext remely  active in 
the deve lopmen t  of  statistical tools for  time 

series analysis. While the choice of  null hypo-  

theses for  financial t ime series tends to be differ- 

ent  than for  more  physical time series (autocor-  
re la t ion plays a lesser role, for  example) ,  the 

overal l  me thodo log ies  are quite similar. Classical 

statisticians [20-25,  28] have long considered 

tests for  nonl inear i ty ,  and are becoming  increas- 

ingly aware  o f  low-dimensional  chaos (just as 

physicists are becoming  increasingly aware of  the 

impor t ance  of  the statistical approach) ;  we cite 

T o n g  [26] as the review which most  neatly and 

comprehens ive ly  ties these two fields together .  

6. Conclusion 

In this article, we have descr ibed an approach  
for  evaluat ing the statistical significance of  evi- 

dence  for nonl inear i ty  in a s ta t ionary time series. 

The  test p roper ly  fails to find nonl inear  structure 

in l inear stochastic systems,  and correct ly iden- 

tifies nonl inear i ty  in several wel l -known exam- 

ples of  low-dimensional  chaot ic  t ime series, even 

when  con tamina t ed  with dynamical  and observa-  
t ional  noise. We illustrated the me thod  with 

several  exper imenta l  data  sets, and conf i rmed 

the evidence  for  nonl inear  structure in some 
systems,  while failing to see such structure in 
o ther  t ime series. 
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